12 research outputs found

    Technologies and Methods Used at the Laboratory for Atmospheric and Space Physics (LASP) to Serve Solar Irradiance Data

    Get PDF
    The Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado in Boulder, USA operates the Solar Radiation and Climate Experiment (SORCE) NASA mission, as well as several other NASA spacecraft and instruments. Dozens of Solar Irradiance data sets are produced, managed, and disseminated to the science community. Data are made freely available to the scientific immediately after they are produced using a variety of data access interfaces, including the LASP Interactive Solar Irradiance Datacenter (LISIRD), which provides centralized access to a variety of solar irradiance data sets using both interactive and scriptable/programmatic methods. This poster highlights the key technological elements used for the NASA SORCE mission ground system to produce, manage, and disseminate data to the scientific community and facilitate long-term data stewardship. The poster presentation will convey designs, technological elements, practices and procedures, and software management processes used for SORCE and their relationship to data quality and data management standards, interoperability, NASA data policy, and community expectations

    A practical crash course in Java 1.1+ programming and technology: part II

    No full text

    A Functional Approach to Hyperspectral Image Analysis in the Cloud, Presented at the Winter 2018 ESIP Meeting

    No full text
    The Hylatis project is building a tool set for hyperspectral image analysis in the cloud. Hyperspectral imagery is used across a broad range earth sciences.<div><br></div><div>In particular, we explore representing datasets as scientific domain agnostic, algebraic functions. Leveraging functional programming, this approach eases data interoperability problems, and provides ease of parallelization and proving code correctness.</div

    Identification of Women at High Risk of Breast Cancer Who Need Supplemental Screening

    No full text
    Background Mammography screening reduces breast cancer mortality, but a proportion of breast cancers are missed and are detected at later stages or develop during between-screening intervals. Purpose To develop a risk model based on negative mammograms that identifies women likely to be diagnosed with breast cancer before or at the next screening examination. Materials and Methods This study was based on the prospective screening cohort Karolinska Mammography Project for Risk Prediction of Breast Cancer (KARMA), 2011-2017. An image-based risk model was developed by using the Stratus method and computer-aided detection mammographic features (density, masses, microcalcifications), differences in the left and right breasts, and age. The lifestyle extended model included menopausal status, family history of breast cancer, body mass index, hormone replacement therapy, and use of tobacco and alcohol. The genetic extended model included a polygenic risk score with 313 single nucleotide polymorphisms. Age-adjusted relative risks and tumor subtype specific risks were estimated by using logistic regression, and absolute risks were calculated. Results Of 70 877 participants in the KARMA cohort, 974 incident cancers were sampled from 9376 healthy women (mean age, 54 years ± 10 [standard deviation]). The area under the receiver operating characteristic curve (AUC) for the image-based model was 0.73 (95% confidence interval [CI]: 0.71, 0.74). The AUCs for the lifestyle and genetic extended models were 0.74 (95% CI: 0.72, 0.75) and 0.77 (95% CI: 0.75, 0.79), respectively. There was a relative eightfold difference in risk between women at high risk and those at general risk. High-risk women were more likely to be diagnosed with stage II cancers and with tumors 20 mm or larger and were less likely to have stage I and estrogen receptor-positive tumors. The image-based model was validated in three external cohorts. Conclusion By combining three mammographic features, differences in the left and right breasts, and optionally lifestyle factors and family history and a polygenic risk score, the model identified women at high likelihood of being diagnosed with breast cancer within 2 years of a negative screening examination and in possible need of supplemental screening

    Identification of Women at High Risk of Breast Cancer Who Need Supplemental Screening.

    No full text
    Background Mammography screening reduces breast cancer mortality, but a proportion of breast cancers are missed and are detected at later stages or develop during between-screening intervals. Purpose To develop a risk model based on negative mammograms that identifies women likely to be diagnosed with breast cancer before or at the next screening examination. Materials and Methods This study was based on the prospective screening cohort Karolinska Mammography Project for Risk Prediction of Breast Cancer (KARMA), 2011-2017. An image-based risk model was developed by using the Stratus method and computer-aided detection mammographic features (density, masses, microcalcifications), differences in the left and right breasts, and age. The lifestyle extended model included menopausal status, family history of breast cancer, body mass index, hormone replacement therapy, and use of tobacco and alcohol. The genetic extended model included a polygenic risk score with 313 single nucleotide polymorphisms. Age-adjusted relative risks and tumor subtype specific risks were estimated by using logistic regression, and absolute risks were calculated. Results Of 70 877 participants in the KARMA cohort, 974 incident cancers were sampled from 9376 healthy women (mean age, 54 years ± 10 [standard deviation]). The area under the receiver operating characteristic curve (AUC) for the image-based model was 0.73 (95% confidence interval [CI]: 0.71, 0.74). The AUCs for the lifestyle and genetic extended models were 0.74 (95% CI: 0.72, 0.75) and 0.77 (95% CI: 0.75, 0.79), respectively. There was a relative eightfold difference in risk between women at high risk and those at general risk. High-risk women were more likely to be diagnosed with stage II cancers and with tumors 20 mm or larger and were less likely to have stage I and estrogen receptor-positive tumors. The image-based model was validated in three external cohorts. Conclusion By combining three mammographic features, differences in the left and right breasts, and optionally lifestyle factors and family history and a polygenic risk score, the model identified women at high likelihood of being diagnosed with breast cancer within 2 years of a negative screening examination and in possible need of supplemental screening. © RSNA, 2020 Online supplemental material is available for this article.MĂ€rit and Hans Rausing’s Initiative Against Breast Cancer, the Kamprad Foundation, B-CAST, and Stockholm County Council, ALF Medicine 201

    HAPI: An API Standard for Accessing Heliophysics Time Series Data

    No full text
    International audienceHeliophysics data analysis often involves combining diverse science measurements, many of them captured as time series. Although there are now only a few commonly used data file formats, the diversity in mechanisms for automated access to and aggregation of such data holdings can make analysis that requires intercomparison of data from multiple data providers difficult. The Heliophysics Application Programmer's Interface (HAPI) is a recently developed standard for accessing distributed time series data to increase interoperability. The HAPI specification is based on the common elements of existing data services, and it standardizes the two main parts of a data service: the request interface and the response data structures. The interface is based on the REpresentational State Transfer (REST) or RESTful architecture style, and the HAPI specification defines five required REST endpoints. Data are returned via a streaming format that hides file boundaries; the metadata is detailed enough for the content to be scientifically useful, e.g., plotted with appropriate axes layout, units, and labels. Multiple mature HAPI-related open-source projects offer server-side implementation tools and client-side libraries for reading HAPI data in multiple languages (IDL, Java, MATLAB, and Python). Multiple data providers in the US and Europe have added HAPI access alongside their existing interfaces. Based on this experience, data can be served via HAPI with little or no information loss compared to similar existing web interfaces. Finally, HAPI has been recommended as a COSPAR standard for time series data delivery
    corecore